

Challenges to the use of CFD in the Military Aircraft Industry

SciTech 2015 Kissimmee, FL January 7, 2015

Brian R. Smith Lockheed Martin Fellow

Overview

- Industrial environment
- Types of problems that need to be addressed
- Challenge areas
- Summary

Environment

- Diverse problem set
 - Incompressible through hypersonic
 - External aerodynamic and internal (inlet, nozzle) flows
 - Range of aircraft (subsonic transport, transonic, fighters, ISR, hypersonic...
 - Range of complexity: components, conceptual, final design
- Large number of users with range of CFD competence
- Computational resources are often restricted difficult to use massive parallel resources
 - Need to protect proprietary data
 - Small, compartmentalized programs
- CFD must buy its way into program application
 - Accurate enough to be relied on for design
 - Cost effective
 - Meet schedules

Diverse CFD Applications on Programs

- New Concepts
 - Radical new designs
 - Flow control (example: sweeping jets, synthetic jets)
- Design
 - Preliminary design screen a design space
- Optimization
 - Optimize outer mold line for cruise conditions
 - Meet performance requirements
- Development
 - Off design
 - Databases: loads, S&C
 - Store separation
- Analysis of special cases
 - Ground test and flight test anomalies
 - Improvements and modifications

Conceptual Design Requires Tools that Can Rapidly Simulate Multiple Configurations

- **LM Aero Employs Splitflow for Conceptual Design**
- Conceptual design methods for fast turnaround analysis
 - Many configurations need to be analyzed
 - Highest fidelity may not be required at this stage
 - Focus is frequently on cruise design points

Vortex Lattice

- A variety of methods can be applied depending on speed regime and accuracy desired
- Methods with automated grid generation can be extremely valuable for these applications

Optimization Requires Specialized Methods for Efficient Application

- Optimization requires methods for automated geometry changes
 - Unstructured meshes
 - Cut cell methods
- Moderate levels of accuracy
- Computational efficiency is critical

From Charlton and Davis, AIAA 2008-0376, "Computational Optimization of the F-35 External Fuel Tank for Store Separation"

High Fidelity Simulations Required to Analyze Flows with Complex Phenomena

- 1
- Some cases require capturing flow physics as accurately as possible
 - Critical flight conditions where an aircraft problem is identified
 - Complex, interacting flow phenomena
 - Shocks
 - Separated flows
 - Vortices
 - Capture of unsteady flow phenomena is required for some problems
 - Aero-optics
 - Aero-acoustics
 - Flow control
- For RANS, need highly accurate models and numerics
 - Explicit algebraic stress or RS closure turbulence models for RANS
 - Extensive model validation
- For unsteady simulations, high order, low dissipation methods
 - Hybrid RANS/LES

For Program Support, Accurate and Efficient Methods Needed

4

- Program demands high accuracy
- Configuration not changing rapidly
- Many solutions required database generation loads, S&C
 - Man-in-the-loop grid generation may be desirable
 - Accurate physical modeling

Wooden, Smith and Azevedo, CFD Predictions of Wing Pressure Distributions On the F-35 at Angles-of-Attack for Transonic Maneuvers AIAA 2007-4433

Physical Models are Critical to CFD Accuracy

- We are decades away from being able to use large eddy simulation for routine design applications
- Physical models, and efficient algorithms to solve models, are essential to expanded application of CFD
 - Transition prediction
 - Turbulence modeling separated flows, compressibility
 - Combustion modeling
 - Real gas reactions for hypersonic flow
 - Flow control actuation
 - Icing
 - Ablation
 - ...

Computational Methods Have Improved, Modeling Issues now Leading Error Term

- Propulsion Aerodynamics Workshop found turbulence models to be largest source of differences between predictions
 - Next pages show results for different turbulence models and different flow solvers with a range of grid densities and solutions algorithms
 - Results show the total pressure recovery near the exit plane

From Domel, Baruzzini and Tworek, "Inlet CFD Results: Comparison of Solver, Turbulence Model, Grid Density and Topology," AIAA 2013-3793

Results: Solver 1, 2-eq

Results: Solver 1, 1-eq

Results: Solver 2, K-KL

0.91

0.90

0.91

0.90

Results: Solver 2, ASM

Standard Turbulence Models do not Capture Many Simple Flows Well

- 4
- Results from AlAATurbulence Model Benchmarking Working Group website for subsonic jet centerline velocity
- If these simple flows are not predicted well, what should we expect for complex jet flows?

Transonic Flow over an Axisymmetric Bump – Separated Flows Remain a Challenge

Velocity and Turbulence Profiles not Predicted Well for Transonic Flow over Axisymmetric Bump

- SST predicts pressure on bump reasonably well
- Velocity and shear stress profiles are poorly predicted
- Results from Turbulence Model Benchmarking Working Group website

Industry has a Need for a Diverse Set of Tools to Meet Diverse Requirements

- Automated methods needed for preliminary design and optimization
- Accurate methods needed for system development and maturation
- Common thread bigger computers alone insufficient to meet needs!
 - Increased automation requires investment in software and algorithms for grid generation, flow solution and post processing
 - Improved accuracy requires investment in improved physical models of turbulence, and robust high order accurate numerical methods.

Wind Tunnel vs CFD on Programs

- Project development efforts have extensive experience using wind tunner data to develop databases
 - Errors in wind tunnel data have been quantified, corrections developed
 - Process is well defined, results are generally repeatable
- Less experience base with CFD
 - Many error sources not well understood by users or program managers
 - Results can be sensitive to CFD software, grid, models
 - User expertise factor in result quality
- Once a design is matured, wind tunnel based generation of some data bases is more competitive in accuracy and cost
 - Minimal model changes
 - Large data sets can be generated rapidly
 - Off design conditions can be relatively accurate
- Large numbers of CFD runs with a fixed model can require significant computational resources
 - Off design cases may be less accurate (high lift, high angle of attack maneuvers)
 - A requirement for a large database generated using unsteady CFD (hybrid RANS/LES methods) may not be feasible computationally

Key Factors for CFD for Military Aircraft Environment

- Computational efficiency is important
- Accurate modeling of turbulence, transition, combustion: currently lacking
- CFD methods and physical models have to be selected for each application to obtain acceptable accuracy and performance
- Calibration and validation are an essential part of industrial application for complex flow problems
- Results are dependent on
 - Code
 - Models
 - User competency

Summary

- Increasing computer power at reduced costs provides opportunities for increased application of CFD
- Industrial applications are diverse in terms of level of accuracy and efficiency that are required
- Significant improvement in CFD methods is required to harness increased computer power

